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ABSTRACT 

The ability of obstacles detection and tracking is essential for the safe visual guidance of autonomous vehicles, 
especially in urban environments. In this paper, we first overview different plane projective transformation (PPT) based 
obstacle detection approaches under the planar ground assumption. Then, we give a simple proof of this approach with 
relative affine, a unified framework that includes the Euclidean, projective and affine frameworks by generalization and 
specialization. Next, we present a real-time hybrid obstacle detection method, which combined the PPT based method 
with the region segmentation based method to provide more accurate locations of obstacles. At last, with the vehicle’s 
position information, a Kalman Filter is applied to track obstacles from frame to frame. This method has been tested on 
THMR-V (Tsinghua Mobile Robot V). Through various experiments we successfully demonstrate its real-time 
performance, high accuracy, and high robustness. 
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1. INTRODUCTION 

The ability to obstacles detection and tracking is essential for the safe vehicle guidance of autonomous vehicles, 
especially in urban environments. In the early research of outdoor mobile robot, people used 3D laser radars to solve 
this problem [1,2]. Although 3D laser radars have very high accuracy, they’re too expensive and the speed for data 
acquisition is too slow to satisfy the real time requirements for outdoor mobile robots. Besides that, the computation for 
detecting obstacles in 3D range data is also very high. In recent years, 2D Time-Of-Flight (TOF) laser radars are widely 
used instead of 3D laser radars [3]. 2D laser radars have faster acquisition speed, lower cost, and lower computation 
than 3D laser radars while the accuracy remains the same. However, the price of 2D laser radars is still too high and 2D 
information is not enough in many cases. Furthermore, laser radars are sensitive to the reflection of the object’s surface, 
especially in outdoor environment. 

Since camera is much cheaper and capable to provide much richer visual information than laser radars, numerous vision 
based obstacle detection approaches have been proposed in recent decades, and some of them have been successfully 
demonstrated [4,5]. Most monocular vision based methods usually detect specific obstacles according to the characters 
of obstacles, such as intensities, shape, etc. Therefore, they are sensitive to the road texture on the ground since no depth 
information is available unless the time-consuming ego-motion estimation is taken when the vehicle is moving. 
Compared with the monocular vision based method, the stereo vision based method is able to utilize the constant 
geometric relationship between a pair of images from the priori camera calibration. Traditional stereo vision is a reliable 
technique to extract 3D information from 2D images and is applicable to visual guidance. However, the 3D world 
restruction is based on correspondences searching between two stereo images, which require extremely powerful 
computational engines and cannot satisfy the real-time requirement, which is the most important to vehicle guidance. 
Furthermore, this method requires metric camera calibration to determine the camera intrinsic parameters (such as focal 
length, aspect ratio, lens effects, and nonlinearities in the optics or sensor) and extrinsic parameters (such as position, 
orientation) using calibration target whose 3D shape is strictly known, which demands considerable time and labor.  

Assuming the ground is planar, if an obstacle is defined as object rising out from the ground plane, the problem of 
obstacle detection can be reduced to the problem of free-space detection, which can be simply detected by Plane 
Projective Transformation, and the complete 3D world reconstruction is no longer required. This paper presents a real-
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time hybrid obstacle detection method with a pair of images acquired by stereo cameras installed on a vehicle. In this 
method, a special plane projective transformation – Homography Transformation is first applied to warp left image into 
right image. Comparing the right image with the warped left image, points in non-free-space (i.e. obstacles area) will 
show disparities due to the obstacles’ heights, while those on the free-space will not. Therefore, thresholding the 
differential image between right image and warped left image, we get the free-space image. After projecting this image 
onto the ground plane by an Inverse Perspective Mapping, we use two histograms to locate the obstacles. Taking this 
result as initial localization, we segment the original image with a Watershed transformation based algorithm to refine 
the localization. At last, with vehicle’s position information from two optical encoders and a magnetic compass, a 
Kalman filter tracks obstacles from frame to frame. This method has been tested on THMR-V (Tsinghua Mobile Robot 
V), an autonomous vehicle developed by Tsinghua University, and demonstrates its real-time performance, high 
accuracy, and high robustness. 

The rest of this paper is organized as the follows: Section 2 overviews the plane projective transformation based 
obstacle detection approach, and gives a simple proof based on Relative Affine; Section 3 describes the obstacle’s rough 
and refined localization, and obstacle tracking in our method in detail. Section 4 gives experimental results and section 
5 ends the paper with conclusions and description of future work. 

2. PLANE PROJECTIVE TRANSFORMATION BASED OBSTACLE DETECTION 

2.1 Plane Projective Transformation 

Plane projective transformation (PPT) is the most general perspective 
transformation between two planes as shown in Fig. 1. A plane 
projective matrix H3x3 can used to present this transformation as the 
follows, 
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where, [x,y,1]T and [x′,y′,1]T are the homogeneous coordinates of two 
correspondence point in two planes, respectively; ≅  is the equality up to 
scale. In order to eliminate the unknown scale factor, let one of the 
elements in H3x3 to have a certain value, for example, h33=1. From Eq. 
(1) we can find each point-correspondence can provide two linear 
equations. Since there are 8 unknowns in H3x3, at least 4 non-collinear 
correspondences are needed to compute H3x3. Although 4 correspondences are enough for solution, in practice tens of 
correspondences are used to reduce the impact of noise with a least-square method.  

2.2 PPT based Obstacle Detection 

Assuming the ground is planar and defining obstacle as object rising out of the ground plane, we can make use of plane 
projective transformation to detect obstacles if they have different intensities again the ground. The Inverse Perspective 
Mapping (IPM) is a special case of plane projective transformation, which is the transformation between the ground 
plane and the image plane, and can be used to remove the perspective effect [6]. Let P=[x,y,1]T be the homogeneous 
coordinates of a point on the ground plane, pl=[ul,vl,1]T and pr=[ur,vr,1]T be the homogeneous coordinates of its 
projections on the left and right original images, respectively. The IPMs between the ground plane and two image 
planes are described as, 

ll pHP ≅        (2) 

rr pHP ≅        (3) 
where Hl and Hr are the projective matrix of these two IPMs. Applying these two IPMs to the original stereo images, we 
get two ground images representing the texture of the road surface as if they were observed from the top. Any 
difference in these two ground images represents a deviation from the assumption of ground plane, and thus indicates a 
non-free space, i.e. obstacle. 
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Figure 1. Plane projective transformation 



Let’s consider a simple example as shown in Fig. 2. Given a 
point Q on the ground plane, by IPMs its corresponding pixels ql 
and qr in the left and right original images will be projected to 
the same location in the left and right ground images, 
respectively. Since the intensities of ql and qr are identical, the 
intensities of their projected pixels in both ground image are also 
identical, which shows zero in the differential image. On the 
other hand, for a point P above the ground plane, its 
corresponding pixel pr in the right image is projected to P' in the 
right ground image. However, in the left ground image, P' is 
given rise by another pixel p'l in left image, which corresponds to 
P' on the ground plane. If P and P' have different contents, then 
pr and p'l have different intensities, which leads to that the 
intensities of left and right ground images at P' are different. 
Thus, we can detect obstacles by finding those pixels that have 
different intensities in the left and right ground images with a 
threshold. 

IPM based obstacle detection has been successfully demonstrated 
on ARGO vehicle [7] and THMR-V vehicle [8]. In practice, the 
assumption of planar ground is often violated in an outdoor environment due to the un-flat ground and the vehicle’s 
movement. Unfortunately, this method is sensitive to the error of the camera geometry with respect to the ground plane, 
which results in that some areas on the ground are wrongly detected as obstacles. In order to solve this problem, 
Onoguchi proposed a Planar Projection Stereopsis (PPS) method [9]. PPS examines the shapes of the obstacles and 
eliminates falsely detected obstacles by using the following properties: obstacles are projected to the shapes falling 
backward from the location where the obstacles touch the ground plane; and the length of shapes falling backward 
depends on the location of obstacles in relation to the stereo cameras and the height of obstacles in relation to the 
ground plane. Bertozzi presented an extension to the IPM [10], which made use of the features like lane markings on 
the ground plane to estimate the slope of the ground plane. 

Combining Eq. (2) and (3), we get 

lrlr HHHHpp 1, −=≅       (4) 

where H is the homography matrix between two image planes with respect to the ground plane. For a point P on the 
ground plane, homography relates its projection pl in left image to its projection pr in the right image. Compared with 
IPM based method, homography-based obstacle detection computes the homography matrix by weak calibration instead 
of metric calibration, which allows it to dynamically update homography matrix using the correspondences on the 
ground plane. Zhu Zhigang presented a reprojection transformation based obstacle detection method [11], in which 
several candidate homography matrices were computed according to different pitch angles in advance. The final 
homography matrix is selected as the matrix, by which the difference between right image and warped left image in 
ground plane area is minimal. Hattori introduced a pseudo-projection camera model that provided a good approximation 
to the projective camera model in road scenes [12]. Under this model, the homography matrix can be approximated to 
an affine transformation matrix, which can be computed easily from two or more lines. Besides that, in IPM based 
method, the differential image is sensitive to the noise in original images, especially at distant points, since the pixels at 
different distance have different weights due to the perspective effect. However, in homography-based method don’t 
have this problem since the difference is taken on image plane and all the pixels have same weights. 

2.3 A Simple Proof 

In this subsection, we present a simple proof of homography-based obstacle detection by a unified relative affine 
framework proposed by Shashua [13], which includes by generalization and specialization the Euclidean, affine and 
projective framework in a natural and simple way. Under this framework, some vision related results are often reduced 
to a single-line proof. The affine invariant -- relative affine structure is a generalization of the affine structure under 
parallel projection and is a specialization of the projective structure, which can be described as a ratio of two relative 
affine structures. In relative affine framework, there are two important theorems: 
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Figure 2. IPM based obstacle detection 



THEOREM 1(Relative Affine Structure): Let π be some 
arbitrary plane and let Pj∈π , j=1,2,3 projecting 
onto pj,p'j in views ψ,ψ', respectively. Let p0∈ψ  and 
p'0∈ψ ' be projections of P0∉π . Let v∈ψ , v'∈ψ ' be 
the epipoles. Let H be a homography determined by 
the equations Hpj≅ p'j, j=1,2,3, and Hv≅ v', scaled to 
satisfy the equation p'0≅ Hp0+v'. Then, for any point 
P projecting onto p∈ψ  and p'∈ψ ', we have 

'' kvHpp +≅    (5) 

The coefficient k=k(p) is independent of ψ', i.e., is 
invariant to the choice of the second view. 

THEOREM 2: Let π denote a reference plane and P0∉π  be 
some fixed point, and P be a point whose 
corresponding points p,p' in both view satisfy Eq. 
(5). Let d,d0 denote the perpendicular distances of P 
and P0 from π, and let z,z0 denote the distances of P and P0 from the first camera center O. Then the parallax 
term k is: 
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Next, we give the description of homography-based obstacle detection, and prove it with above two theorems. 

PROPOSITION: Let H be the homography matrix between left and right image planes (ψl,ψr) with respect to the 
ground plane. Let I(p) be the intensity of a pixel p in the image. Let ψ'l be the warped left image by the 
homography transformation. Let pr(xr,yr)∈ψ r and p'(xr,yr)∈ψ 'l be the pixels at the same location, and P be the 
correspondence point of pr in the world. Suppose that different pixels have different intensities. The necessary 
and sufficient condition that P belongs to obstacles is I(pr)≠I(p'). 

PROOF: Let’s consider the sufficiency first, i.e. if I(pr)≠I(p'), then P belongs to obstacles. We can construct a proof by 
contradiction for the assertion above. Let pl(xl,yl) be the projection of P on the left image plane. We begin by 
assuming that P doesn’t belong to obstacle, i.e. P belongs to the ground plane, then we have pr≅ Hpl and 
I(pr)=I(pl) since both pr and pl are projections of P in the world. Let p'l(x',y')∈ ψ'l be the projection of pl by the 
homography transformation, i.e. p'l≅ Hpl and I(p'l)=I(pl). Then, from above we get p'l≅ Hpl≅ pr and 
I(p'l)=I(pl)=I(pr). For pr=p', p'l=pr=p'. Since both p' and p'l are on the warped left image, I(p')=I(p'l)=I(pr), this 
yields a contradiction with the precondition I(pr)≠I(p'). Therefore, we conclude that the assumption doesn’t 
hold true. 

Next, let’s consider the necessity, i.e. if P belongs to obstacles, then I(pr)≠I(p'). As mentioned above, obstacle 
is defined as object rising out from the ground plane, i.e. d≠0. Since z and d0 are limited, the relative affine 
structure k≠0 (THEOREM 2). Let vr≠0 be the epipole in right image, we get pr≅ Hpl+kvr (THEOREM 1). Since 
vr≠0 and k≠0, it follows that kvr≠0 and pr≠Hpl. Given p'l=Hpl, we have pr≠p'l, and since p'=pr, we get p'≠p'l. 
According to that different pixels have different intensities, I(p')≠I(pr). And given I(pr)=I(pl), therefore, 
I(pr)≠I(p').           � 

3. OBSTACLES LOCALIZATION AND TRACKING 

Using PPT based obstacle detection, we could get a free-space image, in which each pixel is labeled as free-space or 
obstacles. For IPM based method, this free-space image is on the ground plane. For homography-based method, this 
image is on the right image plane and can be transformed to the ground plane by an IPM. In this section, we will discuss 
the problems of obstacles localization and tracking in ground free-space image. 
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Figure 3. Relative affine structure 



3.1 Rough Localization of Obstacles 

Bertozzi demonstrated that an ideal square 
homogeneous obstacle will produce two 
clusters of pixels with triangular shape in the 
ground free-space image due to the different 
coordinates of the projections Cl and Cr of the 
two cameras as shown in Fig. 4. Therefore, 
obstacle localization is reduced to the 
localization of these triangles, which can be 
solved by a polar histogram and a radial 
histogram [7]. 

A polar histogram can be used to determine 
the orientation of an obstacle by detecting its 
triangles in the free-space image. Given a focus point on the ground plane, the polar histogram is computed by scanning 
the free-space image and counting the number of over-threshold pixels for every straight line originating from the focus. 
Since the polar histogram presents an appreciable peak corresponding to each triangle, the orientations of obstacles can 
be determined by using the amplitude and width of the peaks, as well as the interval between joined peaks. It is obvious 
that the corners of the triangles represent the obstacles’ contact points on the ground plane. Thus, a radial histogram can 
be used to determine the obstacle’s distance. For each peak in the polar histogram, the radial histogram is computed by 
scanning a specific sector of the free-space image; whose width is determined as a function of the width of the peak in 
the polar histogram. The number of over-threshold pixels lying in the sector is computed for every discrete distance 
from the focus and the result is normalized. Applying a threshold to the radial histogram allows the determination of the 
position of the triangle’s corner, thus obtaining the obstacle distance. 

3.2 Refined Localization of Obstacles 

However, in practice these triangles in the free-space image are not so clearly defined and often not distinctly disjointed 
because of the texture, irregular shape and homogeneous intensities of real obstacles. Although clusters of pixels having 
an approximate triangular shape are recognizable, the accuracy of localization is poor, especially when the obstacle is 
distant since the pixels at the top of the image correspond to larger area on the ground plane than those at the bottom. 

In order to improve the accuracy of localization, we present a hybrid obstacle detection method, which combines the 
PPT-based method with region segmentation based method. Although the former has lower accuracy in localization, it 
is fast and able to distinguish ground regions with textures from obstacles, which are main problems with the latter. 
Compared with PPT-based method, the region segmentation based method has higher localization accuracy since it is 
working in image plane and not affected by the violation of ground plane assumption. Furthermore, region 
segmentation based method can provide information about obstacle’s shape, which is unavailable in PPT-based method.  

In this hybrid method, we first detect obstacles with the homography-based method, then with a polar histogram and a 
radial histograms, we obtain the rough locations of obstacles. Next, we use a region segmentation based method to 
refine the obstacles’ localizations. In order to reduce the computation involved in region segmentation, a Region-Of-
Interest (ROI) is first computed for each obstacle according to the rough locations. After segmenting the image in ROI, 
we selected the regions belong to obstacles according to shape and 
locations of regions, the rough locations, etc. In the end, the 
selected regions are merged and a bounding box is computed, 
which indicates the shapes and locations of obstacles.  

In region segmentation, we adopt a watershed transformation 
based segmentation method developed in the framework of 
mathematical morphology [14]. In watershed transformation, any 
intensity image is considered as a topographic surface. If we flood 
this surface from its minima and, if we prevent the merging of the 
waters coming from different sources, we partition the image into 
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Figure. 4. Relationships between obstacle and cameras 

 
Figure 5. Watershed transformation 



two different sets: the catchment basins and the watershed lines as shown in Fig. 5. If we apply this transformation to 
the gradient magnitude image, the catchment basins should theoretically correspond to the homogeneous intensity 
regions of this image. In practice, this transformation produces an over-segmentation due to noise or local irregularities 
in the gradient image. A marker-controlled watershed or a hierarchical segmentation with two successive watershed 
transformations can be used to solve this problem. Watershed transformation based segmentation has the advantages of 
high efficiency and high accuracy. Furthermore, it can always provide closed contours by construction and the 
segmentation is independent of shape and size.  

3.3 Obstacles Tracking 

Although above proposed method can refine localization of obstacles, in practice 
some obstacle may be lost in the detection, or one obstacle may be detected as 
two or more obstacles close to each other. Considering the common constant 
acceleration motion, we apply a Kalman filter to solve the reliability problem 
and further improve the accuracy. 

In the above method, the positions of obstacles are represented in vehicle 
coordinates. Since the tracking is carried out in the world coordinates, we must 
transform them to the world coordinates. This requires the vehicle’s position 
information. Given the vehicle’s position, the transformation between vehicle 
coordinates and world coordinates can be described as the follows, 
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where, [xv,yv]
T is the obstacle’s position in vehicle coordinates, [x,y]T is the obstacle’s position in world coordinates, 

(xk,yk,θk) is the vehicle’s position in world coordinates at time instance k. 

Let the measurement vector be the obstacle’s position zk=[x,y]T. The state of the Kalman filter can be described by a six 
dimensional vector xk=[x',y',vx,vy,ax,ay]

T, where (x',y')T, (vx,vy)
T, and (ax,ay)

T are the position, velocity and acceleration of 
the obstacle, respectively. All above variable are defined with respect to the world coordinates. The state equation and 
measurement equation of a Kalman filter can be described as  
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where, the subscript k denotes the time instance; A and H are state transition matrix and measurement matrix, 
respectively. For a constant acceleration motion, they can be defined as the follows, 
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where tk is the time interval between time instance k-1 and k. In Eq. (8), the random variable w and v represent the state 
error and the measurement error, respectively, which are assumed to be independent of each other, white, and with 
normal probability distribution: p(w)~N(0,Q), p(v)~N(0,R), where Q and R are the status noise covariance and the 
measure noise covariance matrices, respectively. In practice, R can be measured prior to the operation of Kalman filter 
with some off-line sample measurements.  

By using Kalman filter, we get an estimation of the obstacle’s position according to the past states, which enables us to 
check the current detection result if any obstacle is lost. This could greatly increase the reliability of the detection and 
improves the accuracy at the same time. 
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Figure 6. Relationship between world 
coordinates and vehicle coordinates 



4. EXPERIMENTS 

The method proposed in this paper has been implemented in C++ on a commercial AMD 1.33Ghz PC with two cameras 
and a Matrox’s Meter RGB/PPB digitizer. We have successfully run this system on THMR-V (TsingHua Mobile 
Robot), an intelligent vehicle developed at Tsinghua University, and tested it within all kinds of environments. To 
compute the homography matrix and IPM matrices, a semi-hand calibration is performed using the feature points on the 
ground plane before experiments. 

Fig. 7.a&b show the stereo images captured in a typical scene. By using the homography transformation, we warp left 
image to right image (Fig. 7.c). After thresholding the differential image between right image and warped left image, 
we get the free-space image (Fig. 7.d), in which the white pixels indicates the free-space while black pixels corresponds 
to the obstacles. Fig. 7.e shows the ground free-space image projected by an IPM. Then, a polar histogram and a radial 
histogram are applied to the ground free-space image to search the obstacle’s location as the gray circle shown in Fig. 

 
(a) Left image 

 

 
(b) Right image 

 
(c) Warped left image 

 
(d) Free-space image 

 

 
(e) Ground free-space image 

 
(f) Region segmentation 

 
(g) Region Selection 
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Figure 7 A typical example of obstacle detection 



7.e. According to this rough location, a ROI is computed for the region segmentation to reduce the computation as the 
white bounding box shown in Fig. 7.f. In this ROI, watershed transformation based region segmentation is performed 
Fig. 7.f). A hierarchical segmentation with two successive watershed transformations is used here to solve the over-
segmentation problem. Next, we select the regions belonging to the obstacle according to the rough location, region 
shape and location, etc. In Fig. 7.g., the edges of selected regions are marked in black. At last, by grouping the selected 
regions, we obtain a bounding box as the black box shown in Fig. 7.h, which indicates the shape and location (white 
cross) of the obstacle in image plane. Through the comparison in Fig. 7.i, we show that the combination of 
homography-based method and watershed region segmentation based method obviously improve the accuracy of 
localization, where the white circle and white cross represent the result from rough localization and refined localization, 
respectively. At the same time, this hybrid method doesn’t have road texture problem with region segmentation based 
method. The road marking and shadow on the ground in this case are correctly detected as the free-space. 

The obstacle tracking has also been tested with several stereo images sequences. Two typical tracking examples are 
presented here. A Kalman filter described as in section 3 is applied to track the obstacles from frame to frame. In order 
to test the performance of Kalman filter, we use the results of rough localization as the inputs. In the first example, the 
vehicle was still and two obstacles were moving straight in front of the vehicle. In the Fig. 8, we show the results of 

 
1st frame   33rd frame  66th frame  99th frame 

 

 
8th frame   46th frame  53rd frame  100th frame 

Figure 8 A sequence of obstacle detection and tracking 
 

 
(a) without Kalman filter (b) with Kalman filter   (c) velocities of the left obstacle      (d) velocities of the right obstacle 

Figure 9 Trajectories of the 1st tracking example 



tracking, where the white circle and white crossing represent the obstacles’ locations without or with Kalman filter, 
respectively. Although sometimes the accuracy of obstacle’s location is so poor, for example, the left obstacle in the 8th 
and 66th frame, and the right obstacle in the 8th and 46th frame, we still can successfully locate the obstacles accurately 
with Kalman filter, even if the obstacles are lost for a while, for example, the left obstacle in the 53rd frame and the right 
obstacle in the 100th frame. Similar results can also be found in Fig. 9.a&b, which are the trajectories of obstacles 
without or with Kalman filter, respectively. It is obvious that the trajectories with Kalman filter are much smoother than 
those without Kalman filter and exhibit clear straight trajectories. From Fig. 9.c&d, we find that the velocities of 
obstacles converge after about 20 frames. 

In the second tracking example, the vehicle was not still any more. It first went straight for about 5 meters then turned 
left as shown in Fig. 10. At the same time, an obstacle was moving straight in front of the vehicle at similar direction. If 
without the vehicle’s position information, the obstacle will be wrongly tracked as shown in Fig. 10.a. In our method, 
we use two optical encoders fixed on the rear wheels to provide translation information, and a magnetic compass to 
provide rotation information. Attaching the world coordinates to the initial position of the vehicle, we can obtain the 
vehicle’s position in the world coordinates at each time instance by dead reckoning. With this vehicle’s position, the 
obstacle is correctly tracked while the vehicle is moving as shown in Fig. 10.b. 

 
(a) the result without the vehicle’s position   (b) the result with the vehicle’s position 

Figure 10 Trajectories of the 2nd tracking example 
 

Although the proposed hybrid method consists of time-consuming region segmentation, it shows high real-time 
performance in all the experiments due to the use of ROI. For the above sequences, the whole processing takes no more 
than 30 ms per frame for 192x144 images with two obstacles and without any extra code optimization, in which near 4 
ms for the rough localization including homography-based obstacle detection and histograms based localization, 13 ms 
for refined localization of each obstacle including watershed transformation based region segmentation, region selection 
and merging, and no more than 1 ms for tracking with Kalman filter. The real-time requirement is satisfied without any 
problem here. 

5. CONCLUSIONS AND FUTURE WORK 

This paper overviews the plane projective transformation based obstacle detection based on planar ground assumption, 
which includes IPM based method and homography (or reprojection) based method. A simple proof of sufficiency and 
necessity of this approach is given based on relative affine framework. Then we present a real-time hybrid obstacle 
detection method, which combines homography-based method with a Watershed region segmentation based method. 
Experimental results show that the combination of these two methods obviously improves the accuracy of obstacles’ 
locations while the advantages of homography-based method are remained, such as low computation, robustness to road 
texture, etc. At last, with the vehicle's position information from optical encoders on the rear wheels and a magnetic 
compass, a Kalman filter is applied to track these obstacles from frame to frame, which improves the reliability of 
detection and accuracy of localization as shown in experiments on THMR-V. 

Since the ground plane assumption is often violated in an outdoor environment in practice, we plan to dynamically 
compute the homography matrix using the features on the ground plane with a robust method. Since the vehicle’s 
position has great influence on the results of tracking, vision based ego-motion estimation is considered to replace the 
optical encoders to improve the accuracy by using the features on the ground plane. Furthermore, a high accurate GPS 
is also considered in the future. 
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